Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2741: 73-100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38217649

RESUMO

Noncoding RNAs, including regulatory RNAs (sRNAs), are instrumental in regulating gene expression in pathogenic bacteria, allowing them to adapt to various stresses encountered in their host environments. Staphylococcus aureus is a well-studied model for RNA-mediated regulation of virulence and pathogenicity, with sRNAs playing significant roles in shaping S. aureus interactions with human and animal hosts. By modulating the translation and/or stability of target mRNAs, sRNAs regulate the synthesis of virulence factors and regulatory proteins required for pathogenesis. Moreover, perturbation of the levels of RNA modifications in two other classes of noncoding RNAs, rRNAs, and tRNAs, has been proposed to contribute to stress adaptation. However, the study of how these various factors affect translation regulation has often been restricted to specific genes, using in vivo reporters and/or in vitro translation systems. Genome-wide sequencing approaches offer novel perspectives for studying RNA-dependent regulation. In particular, ribosome profiling methods provide a powerful resource for characterizing the overall landscape of translational regulation, contributing to a better understanding of S. aureus physiopathology. Here, we describe protocols that we have adapted to perform ribosome profiling in S. aureus.


Assuntos
Perfil de Ribossomos , Staphylococcus aureus , Animais , Humanos , Staphylococcus aureus/metabolismo , Regulação da Expressão Gênica , RNA Ribossômico/genética , RNA Mensageiro/genética , Regulação Bacteriana da Expressão Gênica
2.
Genes (Basel) ; 12(8)2021 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-34440299

RESUMO

RNA modifications are involved in numerous biological processes and are present in all RNA classes. These modifications can be constitutive or modulated in response to adaptive processes. RNA modifications play multiple functions since they can impact RNA base-pairings, recognition by proteins, decoding, as well as RNA structure and stability. However, their roles in stress, environmental adaptation and during infections caused by pathogenic bacteria have just started to be appreciated. With the development of modern technologies in mass spectrometry and deep sequencing, recent examples of modifications regulating host-pathogen interactions have been demonstrated. They show how RNA modifications can regulate immune responses, antibiotic resistance, expression of virulence genes, and bacterial persistence. Here, we illustrate some of these findings, and highlight the strategies used to characterize RNA modifications, and their potential for new therapeutic applications.


Assuntos
Bactérias/genética , Adaptação ao Hospedeiro , Processamento Pós-Transcricional do RNA , RNA Bacteriano/metabolismo , Virulência , Bactérias/patogenicidade , Interações Hospedeiro-Patógeno
3.
RNA ; 26(12): 1957-1975, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32994183

RESUMO

To improve and complete our knowledge of archaeal tRNA modification patterns, we have identified and compared the modification pattern (type and location) in tRNAs of three very different archaeal species, Methanococcus maripaludis (a mesophilic methanogen), Pyrococcus furiosus (a hyperthermophile thermococcale), and Sulfolobus acidocaldarius (an acidophilic thermophilic sulfolobale). Most abundant isoacceptor tRNAs (79 in total) for each of the 20 amino acids were isolated by two-dimensional gel electrophoresis followed by in-gel RNase digestions. The resulting oligonucleotide fragments were separated by nanoLC and their nucleotide content analyzed by mass spectrometry (MS/MS). Analysis of total modified nucleosides obtained from complete digestion of bulk tRNAs was also performed. Distinct base- and/or ribose-methylations, cytidine acetylations, and thiolated pyrimidines were identified, some at new positions in tRNAs. Novel, some tentatively identified, modifications were also found. The least diversified modification landscape is observed in the mesophilic Methanococcus maripaludis and the most complex one in Sulfolobus acidocaldarius Notable observations are the frequent occurrence of ac4C nucleotides in thermophilic archaeal tRNAs, the presence of m7G at positions 1 and 10 in Pyrococcus furiosus tRNAs, and the use of wyosine derivatives at position 37 of tRNAs, especially those decoding U1- and C1-starting codons. These results complete those already obtained by others with sets of archaeal tRNAs from Methanocaldococcus jannaschii and Haloferax volcanii.


Assuntos
Mathanococcus/genética , Nucleotídeos/química , Pyrococcus furiosus/genética , RNA de Transferência/química , RNA de Transferência/genética , Sulfolobus acidocaldarius/genética , Sequência de Bases , Conformação de Ácido Nucleico , RNA Arqueal/química , RNA Arqueal/genética
4.
Methods Mol Biol ; 2113: 101-110, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32006310

RESUMO

RNA modification mapping by mass spectrometry (MS) is based on the use of specific ribonucleases (RNases) that generate short oligonucleotide digestion products which are further separated by nano-liquid chromatography and analyzed by MS and MS/MS. Recent developments in MS instrumentation allow the possibility to deeply explore posttranscriptional modifications. Notably, development of nano-liquid chromatography and nano-electrospray drastically increases the detection sensitivity and allows the identification and sequencing of RNA digested fragments separated and extracted from two-dimensional polyacrylamide gels, as long as the mapping and characterization of ribonucleotide modifications.


Assuntos
Mapeamento de Nucleotídeos/métodos , RNA de Transferência/metabolismo , Cromatografia Líquida , Eletroforese em Gel Bidimensional , Nanotecnologia , Processamento Pós-Transcricional do RNA , Análise de Sequência de RNA , Espectrometria de Massas em Tandem
5.
Biochimie ; 164: 60-69, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31295507

RESUMO

RNA modifications are involved in numerous biological processes. These modifications are constitutive or modulated in response to adaptive processes and can impact RNA base-pairing formation, protein recognition, RNA structure and stability. tRNAs are the most abundantly modified RNA molecules. Analysis of the roles of their modifications in response to stress, environmental changes, and infections caused by pathogens, has fueled new research areas. Nevertheless, the detection of modified nucleotides in RNAs is still a challenging task. We present here a reliable method to identify and localize tRNA modifications, which was applied to the human pathogenic bacteria, Staphyloccocus aureus. The method is based on a separation of tRNA species on a two-dimensional polyacrylamide gel electrophoresis followed by nano liquid chromatography-mass spectrometry. We provided a list of modifications mapped on 25 out of the 40 tRNA species (one isoacceptor for each amino acid). This method can be easily used to monitor the dynamics of tRNA modifications in S. aureus in response to stress adaptation and during infection of the host, a relatively unexplored field.


Assuntos
RNA Bacteriano/metabolismo , RNA de Transferência/metabolismo , Staphylococcus aureus/genética , Processamento Pós-Transcricional do RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...